3.108 \(\int x^m \cos ^3(a+\frac {1}{2} \sqrt {-\frac {(1+m)^2}{n^2}} \log (c x^n)) \, dx\)

Optimal. Leaf size=226 \[ \frac {4 n \sqrt {-\frac {(m+1)^2}{n^2}} x^{m+1} \sin \left (a+\frac {1}{2} \sqrt {-\frac {(m+1)^2}{n^2}} \log \left (c x^n\right )\right )}{5 (m+1)^2}-\frac {4 x^{m+1} \cos ^3\left (a+\frac {1}{2} \sqrt {-\frac {(m+1)^2}{n^2}} \log \left (c x^n\right )\right )}{5 (m+1)}+\frac {8 x^{m+1} \cos \left (a+\frac {1}{2} \sqrt {-\frac {(m+1)^2}{n^2}} \log \left (c x^n\right )\right )}{5 (m+1)}-\frac {6 n \sqrt {-\frac {(m+1)^2}{n^2}} x^{m+1} \sin \left (a+\frac {1}{2} \sqrt {-\frac {(m+1)^2}{n^2}} \log \left (c x^n\right )\right ) \cos ^2\left (a+\frac {1}{2} \sqrt {-\frac {(m+1)^2}{n^2}} \log \left (c x^n\right )\right )}{5 (m+1)^2} \]

[Out]

8/5*x^(1+m)*cos(a+1/2*ln(c*x^n)*(-(1+m)^2/n^2)^(1/2))/(1+m)-4/5*x^(1+m)*cos(a+1/2*ln(c*x^n)*(-(1+m)^2/n^2)^(1/
2))^3/(1+m)+4/5*n*x^(1+m)*sin(a+1/2*ln(c*x^n)*(-(1+m)^2/n^2)^(1/2))*(-(1+m)^2/n^2)^(1/2)/(1+m)^2-6/5*n*x^(1+m)
*cos(a+1/2*ln(c*x^n)*(-(1+m)^2/n^2)^(1/2))^2*sin(a+1/2*ln(c*x^n)*(-(1+m)^2/n^2)^(1/2))*(-(1+m)^2/n^2)^(1/2)/(1
+m)^2

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 226, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.061, Rules used = {4488, 4486} \[ \frac {4 n \sqrt {-\frac {(m+1)^2}{n^2}} x^{m+1} \sin \left (a+\frac {1}{2} \sqrt {-\frac {(m+1)^2}{n^2}} \log \left (c x^n\right )\right )}{5 (m+1)^2}-\frac {4 x^{m+1} \cos ^3\left (a+\frac {1}{2} \sqrt {-\frac {(m+1)^2}{n^2}} \log \left (c x^n\right )\right )}{5 (m+1)}+\frac {8 x^{m+1} \cos \left (a+\frac {1}{2} \sqrt {-\frac {(m+1)^2}{n^2}} \log \left (c x^n\right )\right )}{5 (m+1)}-\frac {6 n \sqrt {-\frac {(m+1)^2}{n^2}} x^{m+1} \sin \left (a+\frac {1}{2} \sqrt {-\frac {(m+1)^2}{n^2}} \log \left (c x^n\right )\right ) \cos ^2\left (a+\frac {1}{2} \sqrt {-\frac {(m+1)^2}{n^2}} \log \left (c x^n\right )\right )}{5 (m+1)^2} \]

Antiderivative was successfully verified.

[In]

Int[x^m*Cos[a + (Sqrt[-((1 + m)^2/n^2)]*Log[c*x^n])/2]^3,x]

[Out]

(8*x^(1 + m)*Cos[a + (Sqrt[-((1 + m)^2/n^2)]*Log[c*x^n])/2])/(5*(1 + m)) - (4*x^(1 + m)*Cos[a + (Sqrt[-((1 + m
)^2/n^2)]*Log[c*x^n])/2]^3)/(5*(1 + m)) + (4*Sqrt[-((1 + m)^2/n^2)]*n*x^(1 + m)*Sin[a + (Sqrt[-((1 + m)^2/n^2)
]*Log[c*x^n])/2])/(5*(1 + m)^2) - (6*Sqrt[-((1 + m)^2/n^2)]*n*x^(1 + m)*Cos[a + (Sqrt[-((1 + m)^2/n^2)]*Log[c*
x^n])/2]^2*Sin[a + (Sqrt[-((1 + m)^2/n^2)]*Log[c*x^n])/2])/(5*(1 + m)^2)

Rule 4486

Int[Cos[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[((m + 1)*(e*x)^(m +
 1)*Cos[d*(a + b*Log[c*x^n])])/(b^2*d^2*e*n^2 + e*(m + 1)^2), x] + Simp[(b*d*n*(e*x)^(m + 1)*Sin[d*(a + b*Log[
c*x^n])])/(b^2*d^2*e*n^2 + e*(m + 1)^2), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[b^2*d^2*n^2 + (m + 1)^2,
 0]

Rule 4488

Int[Cos[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_)*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[((m + 1)*(e*x)
^(m + 1)*Cos[d*(a + b*Log[c*x^n])]^p)/(b^2*d^2*e*n^2*p^2 + e*(m + 1)^2), x] + (Dist[(b^2*d^2*n^2*p*(p - 1))/(b
^2*d^2*n^2*p^2 + (m + 1)^2), Int[(e*x)^m*Cos[d*(a + b*Log[c*x^n])]^(p - 2), x], x] + Simp[(b*d*n*p*(e*x)^(m +
1)*Sin[d*(a + b*Log[c*x^n])]*Cos[d*(a + b*Log[c*x^n])]^(p - 1))/(b^2*d^2*e*n^2*p^2 + e*(m + 1)^2), x]) /; Free
Q[{a, b, c, d, e, m, n}, x] && IGtQ[p, 1] && NeQ[b^2*d^2*n^2*p^2 + (m + 1)^2, 0]

Rubi steps

\begin {align*} \int x^m \cos ^3\left (a+\frac {1}{2} \sqrt {-\frac {(1+m)^2}{n^2}} \log \left (c x^n\right )\right ) \, dx &=-\frac {4 x^{1+m} \cos ^3\left (a+\frac {1}{2} \sqrt {-\frac {(1+m)^2}{n^2}} \log \left (c x^n\right )\right )}{5 (1+m)}-\frac {6 \sqrt {-\frac {(1+m)^2}{n^2}} n x^{1+m} \cos ^2\left (a+\frac {1}{2} \sqrt {-\frac {(1+m)^2}{n^2}} \log \left (c x^n\right )\right ) \sin \left (a+\frac {1}{2} \sqrt {-\frac {(1+m)^2}{n^2}} \log \left (c x^n\right )\right )}{5 (1+m)^2}+\frac {6}{5} \int x^m \cos \left (a+\frac {1}{2} \sqrt {-\frac {(1+m)^2}{n^2}} \log \left (c x^n\right )\right ) \, dx\\ &=\frac {8 x^{1+m} \cos \left (a+\frac {1}{2} \sqrt {-\frac {(1+m)^2}{n^2}} \log \left (c x^n\right )\right )}{5 (1+m)}-\frac {4 x^{1+m} \cos ^3\left (a+\frac {1}{2} \sqrt {-\frac {(1+m)^2}{n^2}} \log \left (c x^n\right )\right )}{5 (1+m)}+\frac {4 \sqrt {-\frac {(1+m)^2}{n^2}} n x^{1+m} \sin \left (a+\frac {1}{2} \sqrt {-\frac {(1+m)^2}{n^2}} \log \left (c x^n\right )\right )}{5 (1+m)^2}-\frac {6 \sqrt {-\frac {(1+m)^2}{n^2}} n x^{1+m} \cos ^2\left (a+\frac {1}{2} \sqrt {-\frac {(1+m)^2}{n^2}} \log \left (c x^n\right )\right ) \sin \left (a+\frac {1}{2} \sqrt {-\frac {(1+m)^2}{n^2}} \log \left (c x^n\right )\right )}{5 (1+m)^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.69, size = 158, normalized size = 0.70 \[ \frac {x^{m+1} \left (n \sqrt {-\frac {(m+1)^2}{n^2}} \left (5 \sin \left (a+\frac {1}{2} \sqrt {-\frac {(m+1)^2}{n^2}} \log \left (c x^n\right )\right )-3 \sin \left (3 a+\frac {3}{2} \sqrt {-\frac {(m+1)^2}{n^2}} \log \left (c x^n\right )\right )\right )+10 (m+1) \cos \left (a+\frac {1}{2} \sqrt {-\frac {(m+1)^2}{n^2}} \log \left (c x^n\right )\right )-2 (m+1) \cos \left (3 a+\frac {3}{2} \sqrt {-\frac {(m+1)^2}{n^2}} \log \left (c x^n\right )\right )\right )}{10 (m+1)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[x^m*Cos[a + (Sqrt[-((1 + m)^2/n^2)]*Log[c*x^n])/2]^3,x]

[Out]

(x^(1 + m)*(10*(1 + m)*Cos[a + (Sqrt[-((1 + m)^2/n^2)]*Log[c*x^n])/2] - 2*(1 + m)*Cos[3*a + (3*Sqrt[-((1 + m)^
2/n^2)]*Log[c*x^n])/2] + Sqrt[-((1 + m)^2/n^2)]*n*(5*Sin[a + (Sqrt[-((1 + m)^2/n^2)]*Log[c*x^n])/2] - 3*Sin[3*
a + (3*Sqrt[-((1 + m)^2/n^2)]*Log[c*x^n])/2])))/(10*(1 + m)^2)

________________________________________________________________________________________

fricas [C]  time = 0.48, size = 128, normalized size = 0.57 \[ \frac {{\left (5 \, e^{\left (-\frac {{\left (m + 1\right )} n \log \relax (x) - 2 i \, a n + {\left (m + 1\right )} \log \relax (c)}{n}\right )} + 15 \, e^{\left (-\frac {2 \, {\left ({\left (m + 1\right )} n \log \relax (x) - 2 i \, a n + {\left (m + 1\right )} \log \relax (c)\right )}}{n}\right )} - 5 \, e^{\left (-\frac {3 \, {\left ({\left (m + 1\right )} n \log \relax (x) - 2 i \, a n + {\left (m + 1\right )} \log \relax (c)\right )}}{n}\right )} + 1\right )} e^{\left (\frac {5 \, {\left ({\left (m + 1\right )} n \log \relax (x) - 2 i \, a n + {\left (m + 1\right )} \log \relax (c)\right )}}{2 \, n} + \frac {2 i \, a n - {\left (m + 1\right )} \log \relax (c)}{n}\right )}}{20 \, {\left (m + 1\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m*cos(a+1/2*log(c*x^n)*(-(1+m)^2/n^2)^(1/2))^3,x, algorithm="fricas")

[Out]

1/20*(5*e^(-((m + 1)*n*log(x) - 2*I*a*n + (m + 1)*log(c))/n) + 15*e^(-2*((m + 1)*n*log(x) - 2*I*a*n + (m + 1)*
log(c))/n) - 5*e^(-3*((m + 1)*n*log(x) - 2*I*a*n + (m + 1)*log(c))/n) + 1)*e^(5/2*((m + 1)*n*log(x) - 2*I*a*n
+ (m + 1)*log(c))/n + (2*I*a*n - (m + 1)*log(c))/n)/(m + 1)

________________________________________________________________________________________

giac [C]  time = 14.21, size = 1870, normalized size = 8.27 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m*cos(a+1/2*log(c*x^n)*(-(1+m)^2/n^2)^(1/2))^3,x, algorithm="giac")

[Out]

1/4*(8*m^3*n^4*x*x^m*e^(3*I*a - 3/2*(n*abs(m*n + n)*log(x) + abs(m*n + n)*log(c))/n^2) + 24*m^3*n^4*x*x^m*e^(I
*a - 1/2*(n*abs(m*n + n)*log(x) + abs(m*n + n)*log(c))/n^2) + 24*m^3*n^4*x*x^m*e^(-I*a + 1/2*(n*abs(m*n + n)*l
og(x) + abs(m*n + n)*log(c))/n^2) + 8*m^3*n^4*x*x^m*e^(-3*I*a + 3/2*(n*abs(m*n + n)*log(x) + abs(m*n + n)*log(
c))/n^2) + 24*m^2*n^4*x*x^m*e^(3*I*a - 3/2*(n*abs(m*n + n)*log(x) + abs(m*n + n)*log(c))/n^2) + 12*m^2*n^3*x*x
^m*abs(m*n + n)*e^(3*I*a - 3/2*(n*abs(m*n + n)*log(x) + abs(m*n + n)*log(c))/n^2) + 72*m^2*n^4*x*x^m*e^(I*a -
1/2*(n*abs(m*n + n)*log(x) + abs(m*n + n)*log(c))/n^2) + 12*m^2*n^3*x*x^m*abs(m*n + n)*e^(I*a - 1/2*(n*abs(m*n
 + n)*log(x) + abs(m*n + n)*log(c))/n^2) + 72*m^2*n^4*x*x^m*e^(-I*a + 1/2*(n*abs(m*n + n)*log(x) + abs(m*n + n
)*log(c))/n^2) - 12*m^2*n^3*x*x^m*abs(m*n + n)*e^(-I*a + 1/2*(n*abs(m*n + n)*log(x) + abs(m*n + n)*log(c))/n^2
) + 24*m^2*n^4*x*x^m*e^(-3*I*a + 3/2*(n*abs(m*n + n)*log(x) + abs(m*n + n)*log(c))/n^2) - 12*m^2*n^3*x*x^m*abs
(m*n + n)*e^(-3*I*a + 3/2*(n*abs(m*n + n)*log(x) + abs(m*n + n)*log(c))/n^2) - 2*(m*n + n)^2*m*n^2*x*x^m*e^(3*
I*a - 3/2*(n*abs(m*n + n)*log(x) + abs(m*n + n)*log(c))/n^2) + 24*m*n^4*x*x^m*e^(3*I*a - 3/2*(n*abs(m*n + n)*l
og(x) + abs(m*n + n)*log(c))/n^2) + 24*m*n^3*x*x^m*abs(m*n + n)*e^(3*I*a - 3/2*(n*abs(m*n + n)*log(x) + abs(m*
n + n)*log(c))/n^2) - 54*(m*n + n)^2*m*n^2*x*x^m*e^(I*a - 1/2*(n*abs(m*n + n)*log(x) + abs(m*n + n)*log(c))/n^
2) + 72*m*n^4*x*x^m*e^(I*a - 1/2*(n*abs(m*n + n)*log(x) + abs(m*n + n)*log(c))/n^2) + 24*m*n^3*x*x^m*abs(m*n +
 n)*e^(I*a - 1/2*(n*abs(m*n + n)*log(x) + abs(m*n + n)*log(c))/n^2) - 54*(m*n + n)^2*m*n^2*x*x^m*e^(-I*a + 1/2
*(n*abs(m*n + n)*log(x) + abs(m*n + n)*log(c))/n^2) + 72*m*n^4*x*x^m*e^(-I*a + 1/2*(n*abs(m*n + n)*log(x) + ab
s(m*n + n)*log(c))/n^2) - 24*m*n^3*x*x^m*abs(m*n + n)*e^(-I*a + 1/2*(n*abs(m*n + n)*log(x) + abs(m*n + n)*log(
c))/n^2) - 2*(m*n + n)^2*m*n^2*x*x^m*e^(-3*I*a + 3/2*(n*abs(m*n + n)*log(x) + abs(m*n + n)*log(c))/n^2) + 24*m
*n^4*x*x^m*e^(-3*I*a + 3/2*(n*abs(m*n + n)*log(x) + abs(m*n + n)*log(c))/n^2) - 24*m*n^3*x*x^m*abs(m*n + n)*e^
(-3*I*a + 3/2*(n*abs(m*n + n)*log(x) + abs(m*n + n)*log(c))/n^2) - 2*(m*n + n)^2*n^2*x*x^m*e^(3*I*a - 3/2*(n*a
bs(m*n + n)*log(x) + abs(m*n + n)*log(c))/n^2) + 8*n^4*x*x^m*e^(3*I*a - 3/2*(n*abs(m*n + n)*log(x) + abs(m*n +
 n)*log(c))/n^2) - 3*(m*n + n)^2*n*x*x^m*abs(m*n + n)*e^(3*I*a - 3/2*(n*abs(m*n + n)*log(x) + abs(m*n + n)*log
(c))/n^2) + 12*n^3*x*x^m*abs(m*n + n)*e^(3*I*a - 3/2*(n*abs(m*n + n)*log(x) + abs(m*n + n)*log(c))/n^2) - 54*(
m*n + n)^2*n^2*x*x^m*e^(I*a - 1/2*(n*abs(m*n + n)*log(x) + abs(m*n + n)*log(c))/n^2) + 24*n^4*x*x^m*e^(I*a - 1
/2*(n*abs(m*n + n)*log(x) + abs(m*n + n)*log(c))/n^2) - 27*(m*n + n)^2*n*x*x^m*abs(m*n + n)*e^(I*a - 1/2*(n*ab
s(m*n + n)*log(x) + abs(m*n + n)*log(c))/n^2) + 12*n^3*x*x^m*abs(m*n + n)*e^(I*a - 1/2*(n*abs(m*n + n)*log(x)
+ abs(m*n + n)*log(c))/n^2) - 54*(m*n + n)^2*n^2*x*x^m*e^(-I*a + 1/2*(n*abs(m*n + n)*log(x) + abs(m*n + n)*log
(c))/n^2) + 24*n^4*x*x^m*e^(-I*a + 1/2*(n*abs(m*n + n)*log(x) + abs(m*n + n)*log(c))/n^2) + 27*(m*n + n)^2*n*x
*x^m*abs(m*n + n)*e^(-I*a + 1/2*(n*abs(m*n + n)*log(x) + abs(m*n + n)*log(c))/n^2) - 12*n^3*x*x^m*abs(m*n + n)
*e^(-I*a + 1/2*(n*abs(m*n + n)*log(x) + abs(m*n + n)*log(c))/n^2) - 2*(m*n + n)^2*n^2*x*x^m*e^(-3*I*a + 3/2*(n
*abs(m*n + n)*log(x) + abs(m*n + n)*log(c))/n^2) + 8*n^4*x*x^m*e^(-3*I*a + 3/2*(n*abs(m*n + n)*log(x) + abs(m*
n + n)*log(c))/n^2) + 3*(m*n + n)^2*n*x*x^m*abs(m*n + n)*e^(-3*I*a + 3/2*(n*abs(m*n + n)*log(x) + abs(m*n + n)
*log(c))/n^2) - 12*n^3*x*x^m*abs(m*n + n)*e^(-3*I*a + 3/2*(n*abs(m*n + n)*log(x) + abs(m*n + n)*log(c))/n^2))/
(16*m^4*n^4 + 64*m^3*n^4 - 40*(m*n + n)^2*m^2*n^2 + 96*m^2*n^4 - 80*(m*n + n)^2*m*n^2 + 64*m*n^4 + 9*(m*n + n)
^4 - 40*(m*n + n)^2*n^2 + 16*n^4)

________________________________________________________________________________________

maple [F]  time = 0.10, size = 0, normalized size = 0.00 \[ \int x^{m} \left (\cos ^{3}\left (a +\frac {\ln \left (c \,x^{n}\right ) \sqrt {-\frac {\left (1+m \right )^{2}}{n^{2}}}}{2}\right )\right )\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^m*cos(a+1/2*ln(c*x^n)*(-(1+m)^2/n^2)^(1/2))^3,x)

[Out]

int(x^m*cos(a+1/2*ln(c*x^n)*(-(1+m)^2/n^2)^(1/2))^3,x)

________________________________________________________________________________________

maxima [A]  time = 0.45, size = 195, normalized size = 0.86 \[ \frac {{\left (c^{\frac {3 \, m}{n} + \frac {3}{n}} x \cos \left (3 \, a\right ) e^{\left (m \log \relax (x) + \frac {3 \, m \log \left (x^{n}\right )}{n} + \frac {3 \, \log \left (x^{n}\right )}{n}\right )} + 5 \, c^{\frac {2 \, m}{n} + \frac {2}{n}} x \cos \relax (a) e^{\left (m \log \relax (x) + \frac {2 \, m \log \left (x^{n}\right )}{n} + \frac {2 \, \log \left (x^{n}\right )}{n}\right )} + 15 \, c^{\frac {m}{n} + \frac {1}{n}} x \cos \relax (a) e^{\left (m \log \relax (x) + \frac {m \log \left (x^{n}\right )}{n} + \frac {\log \left (x^{n}\right )}{n}\right )} - 5 \, x x^{m} \cos \left (3 \, a\right )\right )} e^{\left (-\frac {3 \, m \log \left (x^{n}\right )}{2 \, n} - \frac {3 \, \log \left (x^{n}\right )}{2 \, n}\right )}}{20 \, {\left (c^{\frac {3 \, m}{2 \, n} + \frac {3}{2 \, n}} m + c^{\frac {3 \, m}{2 \, n} + \frac {3}{2 \, n}}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m*cos(a+1/2*log(c*x^n)*(-(1+m)^2/n^2)^(1/2))^3,x, algorithm="maxima")

[Out]

1/20*(c^(3*m/n + 3/n)*x*cos(3*a)*e^(m*log(x) + 3*m*log(x^n)/n + 3*log(x^n)/n) + 5*c^(2*m/n + 2/n)*x*cos(a)*e^(
m*log(x) + 2*m*log(x^n)/n + 2*log(x^n)/n) + 15*c^(m/n + 1/n)*x*cos(a)*e^(m*log(x) + m*log(x^n)/n + log(x^n)/n)
 - 5*x*x^m*cos(3*a))*e^(-3/2*m*log(x^n)/n - 3/2*log(x^n)/n)/(c^(3/2*m/n + 3/2/n)*m + c^(3/2*m/n + 3/2/n))

________________________________________________________________________________________

mupad [B]  time = 4.71, size = 277, normalized size = 1.23 \[ \frac {x\,x^m\,{\mathrm {e}}^{-a\,1{}\mathrm {i}}\,\frac {1}{{\left (c\,x^n\right )}^{\frac {\sqrt {-\frac {2\,m}{n^2}-\frac {1}{n^2}-\frac {m^2}{n^2}}\,1{}\mathrm {i}}{2}}}\,\left (2\,m+2+n\,\sqrt {-\frac {{\left (m+1\right )}^2}{n^2}}\,1{}\mathrm {i}\right )}{4\,{\left (m+1\right )}^2}+\frac {x\,x^m\,{\mathrm {e}}^{a\,1{}\mathrm {i}}\,{\left (c\,x^n\right )}^{\frac {\sqrt {-\frac {2\,m}{n^2}-\frac {1}{n^2}-\frac {m^2}{n^2}}\,1{}\mathrm {i}}{2}}\,\left (2\,m+2-n\,\sqrt {-\frac {{\left (m+1\right )}^2}{n^2}}\,1{}\mathrm {i}\right )}{4\,{\left (m+1\right )}^2}-\frac {x\,x^m\,{\mathrm {e}}^{-a\,3{}\mathrm {i}}\,\frac {1}{{\left (c\,x^n\right )}^{\frac {\sqrt {-\frac {2\,m}{n^2}-\frac {1}{n^2}-\frac {m^2}{n^2}}\,3{}\mathrm {i}}{2}}}\,\left (2\,m+2+n\,\sqrt {-\frac {{\left (m+1\right )}^2}{n^2}}\,3{}\mathrm {i}\right )}{20\,{\left (m+1\right )}^2}-\frac {x\,x^m\,{\mathrm {e}}^{a\,3{}\mathrm {i}}\,{\left (c\,x^n\right )}^{\frac {\sqrt {-\frac {2\,m}{n^2}-\frac {1}{n^2}-\frac {m^2}{n^2}}\,3{}\mathrm {i}}{2}}\,\left (2\,m+2-n\,\sqrt {-\frac {{\left (m+1\right )}^2}{n^2}}\,3{}\mathrm {i}\right )}{20\,{\left (m+1\right )}^2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^m*cos(a + (log(c*x^n)*(-(m + 1)^2/n^2)^(1/2))/2)^3,x)

[Out]

(x*x^m*exp(-a*1i)/(c*x^n)^(((- (2*m)/n^2 - 1/n^2 - m^2/n^2)^(1/2)*1i)/2)*(2*m + n*(-(m + 1)^2/n^2)^(1/2)*1i +
2))/(4*(m + 1)^2) + (x*x^m*exp(a*1i)*(c*x^n)^(((- (2*m)/n^2 - 1/n^2 - m^2/n^2)^(1/2)*1i)/2)*(2*m - n*(-(m + 1)
^2/n^2)^(1/2)*1i + 2))/(4*(m + 1)^2) - (x*x^m*exp(-a*3i)/(c*x^n)^(((- (2*m)/n^2 - 1/n^2 - m^2/n^2)^(1/2)*3i)/2
)*(2*m + n*(-(m + 1)^2/n^2)^(1/2)*3i + 2))/(20*(m + 1)^2) - (x*x^m*exp(a*3i)*(c*x^n)^(((- (2*m)/n^2 - 1/n^2 -
m^2/n^2)^(1/2)*3i)/2)*(2*m - n*(-(m + 1)^2/n^2)^(1/2)*3i + 2))/(20*(m + 1)^2)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int x^{m} \cos ^{3}{\left (a + \frac {\sqrt {- \frac {m^{2}}{n^{2}} - \frac {2 m}{n^{2}} - \frac {1}{n^{2}}} \log {\left (c x^{n} \right )}}{2} \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**m*cos(a+1/2*ln(c*x**n)*(-(1+m)**2/n**2)**(1/2))**3,x)

[Out]

Integral(x**m*cos(a + sqrt(-m**2/n**2 - 2*m/n**2 - 1/n**2)*log(c*x**n)/2)**3, x)

________________________________________________________________________________________